

Palm Beach County MS4s

Palm Beach County MS4 NPDES Steering Committee Meeting Wednesday February 16, 2022

Palm Beach County NPDES

Northern Palm Beach County Improvement District 359 Hiatt Drive Palm Beach Gardens, FL 33418 www.pbco-npdes.org

AGENDA PALM BEACH COUNTY NPDES MS4 STEERING COMMITTEE MEETING <u>WEDNESDAY, FEBRUARY 16, 2022</u> 9:00 A.M. – 11:00 A.M. Palm Beach Gardens City Hall - Council Chambers & Virtual (Ref. No. C1050.10)

LINK TO TEAMS MEETING: Refer to NPDES Website (www.pbco-npdes.org) CALL IN NUMBER: Refer to NPDES Website (www.pbco-npdes.org) CONFERENCE ID: Refer to NPDES Website (www.pbco-npdes.org)

The agenda for the meeting is as follows:

II.

MS	S4 Activities	
a.	Introductions	
b.	Approval of January 19, 2020, Minutes	
с.	Individual 5 th Year Annual Reports	
d.	Joint Annual Report for Year 5	
e.	Training Registration Flyers	
f.	2020-2022 Biennial Assessment	
g.	Cycle 5 Draft Permit	
h.	FDEP Request for Retention/Detention Invent	ory
Ne	ext Scheduled Event	

March 17, 2022, IDDE, Spills & SEC Refresher Training by Cheryl Moore, 9:00 a.m. at City of Palm Beach Gardens Emergency Center & Virtual

Palm Beach County NPDES

Northern Palm Beach County Improvement District 359 Hiatt Drive Palm Beach Gardens, FL 33418 www.pbco-npdes.org

AGENDA PALM BEACH COUNTY NPDES MS4 STEERING COMMITTEE MEETING <u>WEDNESDAY, FEBRUARY 16, 2022</u> 9:00 A.M. – 11:00 A.M. Palm Beach Gardens City Hall - Council Chambers & Virtual (Ref. No. C1050.10)

LINK TO TEAMS MEETING: Refer to NPDES Website (www.pbco-npdes.org) CALL IN NUMBER: Refer to NPDES Website (www.pbco-npdes.org) CONFERENCE ID: Refer to NPDES Website (www.pbco-npdes.org)

The agenda for the meeting is as follows:

I. MS4 Activities

a. Introductions

b. Approval of January 19, 2020, Minutes

c. Individual 5th Year Annual Reports

d. Joint Annual Report for Year 5

e. Training Registration Flyers

f. 2020-2022 Biennial Assessment

g. Cycle 5 Draft Permit

h. FDEP Request for Retention/Detention Inventory

II. Next Scheduled Event

March 17, 2022, IDDE, Spills & SEC Refresher Training by Cheryl Moore, 9:00 a.m. at City of Palm Beach Gardens Emergency Center & Virtual

PBC MS4 Co-Permittee Meeting Cycle 4 Year 5 Joint Annual Report

WQ Program/Results

February 16, 2022

This website has been authorized by the Palm Beach County MS4 NPDES (PBC NPDES) Steering Committee as a resource for all permittees within the county. It is intended that this site will provide the permittee with helpful information on understanding and complying with the requirements of the MS4 NPDES permit.

Home	Home	
News	What is PBC MS4 NPDES?	Latest News
The MS4 Permit What is SWMP?	The Municipal Separate Storm Sewer System (MS4) National Pollutant Discharge Elimination System (NPDES) permit allows a permittee to discharge stormwater from its	October 21, 2020 Steering Committee Meeting Presentation 10/21/2020
Components of the MS4 Permit	stormwater collection and conveyance system into a receiving water owned by the	Cycle 4 - Year 4 Permit Requirements Presented September 16,
Group/Joint Activities	intended to reduce stormwater pollutant	2020 9/18/2020
Impaired Waters & TMDLs	discharges into those receiving water bodies. In 1987, the Environmental Protection	PBC MS4 NPDES Permit Annual Staff Training Presented March 11, 2020
Annual Reporting	was required, under Section 402 (p) of the Clean Water Act (N40CFR Part	3/18/2020
Meetings and Minutes	112.26), to establish final regulations governing stormwater discharge permit applica permit is reissued in five year intervals. Effective	
Contacts	cycle permits is as follows:	
Definitions	Cycle 1 - February 1, 1997 Cycle 2 - November 18, 2002	
Links	Cycle 3 - March 2, 2011 Cycle 4 - September 8, 2016	
Accessibility		

Google Site Search Search Upcoming Meeting or Training 5th Year Annual Reports - Individual Reports, Joint Report Cycle 5 Permit Requirements Permit Re-Application February 16, 2022 9:00 AM-11:00 AM Location: Palm Beach Hall Council Chamber: The meeting will be h Beach Gardens City H Chambers located at The MS4 Permit Military Trail, Palm Be FL 33410. What is SWMP? Face coverings are all City of Palm Bea Components of the \bigtriangledown buildings. MS4 Permit Virtual attendance is a co-permittees/interes A few minutes before click here to join the r Activities virtually through Micro Impaired Waters & or call in Call-In Number: 561-421-3607 Conference ID: Annual Reporting E03 403 4 Meetings and Contacts Definitions

Google Site Sea Search

Annual Reporting

Home

News

TMDLs

Minutes

Links

Accessibility

Annual reporting requirements for the MS4 NPDES Permit are in Part V. Sections C-E of the Permit. These sections of the Permit refer to Rule 62-624.600 F.A.C. for report preparation requirements.

Certification of the Annual Report Form (ARF) must be in accordance with Rule 62.620.305 F.A.C.

The ARF must be submitted within 6 months of the end of the reporting cycle.

Group/Joint _ The Permit requires that records be retained in accordance with Rule 62-620.350 F.A.C.(generally three years).

Reporting Forms and Guidance

Individual permittees must prepare annual reports using the ARF, provided by FDEP. The most current ARF template is available here:

- Instructions
- Cycle 4 Annual Report Forms
- Guidance for Completing Selected Sections of the C4-Y2 Individual ARFs

In addition to the individual annual reports, a joint annual report is prepared that covers all the joint activites.

Report Archive

Cycle 4

Year 5 (2020-2021) Joint Report(DRAFT) Individual Annual Report Forms (ARFs) Reference Documents

Legal Authority Ordinances

Florida Friendly Ordinances -Landscape/Fertilizer

Municipal Separate Storm Sewer System National Pollutant Discharge Elimination System

Joint Annual Report

Cycle 4 - Year 5

October 1, 2020 Thru September 30, 2021

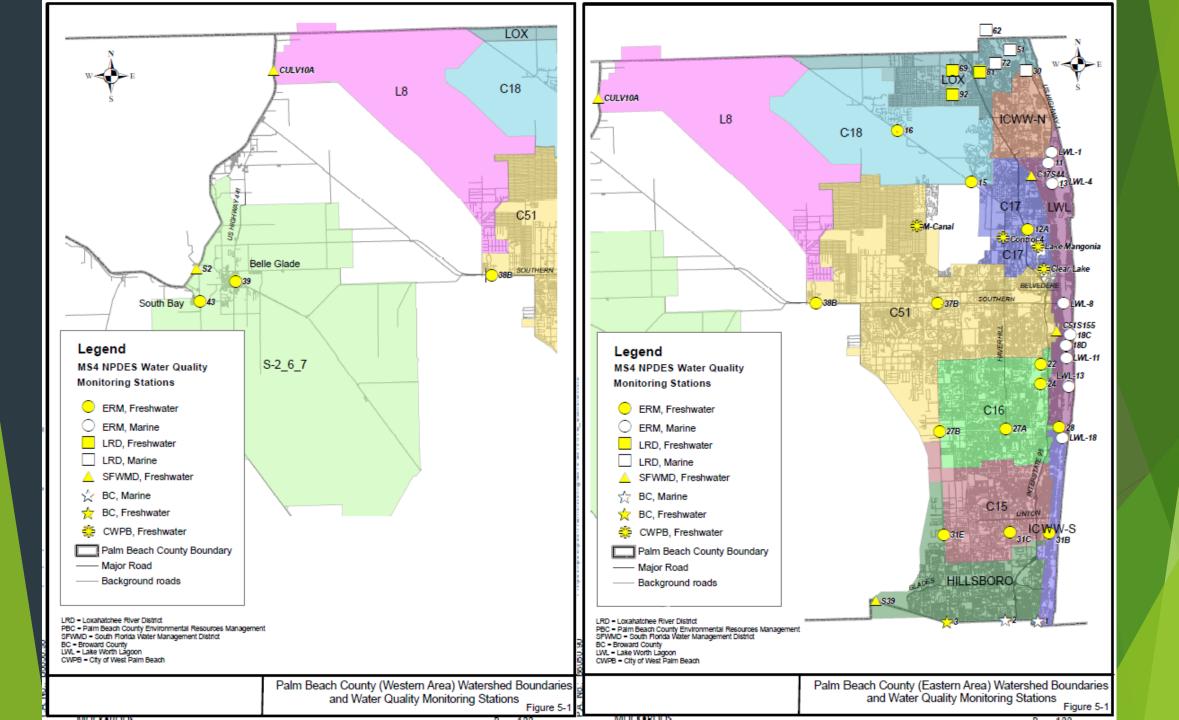
Submitted by Northern Palm Beach County Improvement District as Lead Permittee

> prepared by MOCK•ROOS

DRAFT

NPDES MS4

Palm Beach County MS4 Permit No. FLS000018-004



PBC MS4 Program

► Contacts Group Activities Annual Training Public Education ► TMDL Tracking ► Water Quality Monitoring Water Quality Monitoring Program

 Ambient WQ Program
 Began in 1999
 Provides Data & Trend Analyses Water Quality Monitoring Program

Data Sources: PBC ERM (25) Lox River District (7) ► SFWMD (5) Broward County (3) ► West Palm Beach (4)

Water Quality Monitoring Program 44 Stations
+/- 22 Parameters
Frequencies (Table 5-2)
Monthly
Bi-Monthly
Quarterly

Table 5-1: Monitoring Site Data

Table 5-2: Sampling Schedule per parameter

Table 5-3: WQ Standards per Waterbody (7 pages)

Table 5-4: <u>Current Period</u> Data per site (44 pages)

Table 5-5: <u>Current Period</u> Data Summary of Exceedences per site

Table 5-6: <u>Period of Record</u> Data Summary per site per watershed (25 pages)

Table 5-7: <u>Period of Record</u> Annual Geometric Mean for TN, TP & Chl-a, per watershed, per site

Tables 5-8 thru 5-10: <u>10-year</u> <u>Period</u> AGMs w/ comparisons to the criteria for TN, TP, Chl-a

Table 5-11: <u>Period of Record</u> WQ Trends for TP, TN, Chl-a, per watershed (14 pages)

Figures 5-2 thru 5-4: <u>Period of</u> <u>Record</u> WQ Trends for TN, TP, & Chl-a

Year 5 Summary of Exceedances

Parameter	Exceedance Location(s)
DO	C-15, C-16, C-18, Lox River, Hillsboro, L-8, S-2-6-7
Fecal coliform	Loxahatchee River
Turbidity	C-17, L-8, S-2-6-7, WPBWS
рН	C-17, WPBWS
Chl-a	Lox River, LWL-N, LWL-C
Specific Conductivity	C-16, C51, S-2-6-7
Copper	ICWW-S, LWL-N, LWL-C

Year 5 Summary of Exceedances

Table 5-5 Summary of Exceedences per Site by Parameter October 1, 2020 - September 30, 2021 Watershed Site Dissolved Oxygen Turbidity Fecal Coliform pH Specific Conductivity Chlor-a* Copper 0 31E 1/6													
Watershed		Oxygen	Turbidity		pН		(AGM or	Copper					
		1/6											
C-15													
					1/6								
					1/6								
C-16		1/5											
	27A	1/6											
	28												
C 47			1/6										
0-17	C17S44												
	16	2/6											
C-18	15	4/6											
0-10	92												
	81												
	38B												
C-51	37B												
	C51S155				1/10								
	69	1/8		1/1									
Lox	51												
LOX	62												
	72						6.6						
ICWW-N	30												
	LWL-1						4.4	1/3					
LWL-N	11												
CIVEN	13												
	LWL-4												
	LWL-8				1/11		18%	1/4					
LWL-C	18C												
CIVERO	18D							1/5					
	LWL-11				1/11			1/4					
ICWW-S	LWL-13				1/10								
	LWL-18							1/4					
	1												
Hillsboro	2												
	3												
	S39	1/11											
L-8	Culv10a	2/9	4/9			1/9							
	S-2	2/11				3/11							
S-2-6-7	39	2/6	1/6			1/6							
	43	1/6	1/6			1/6							
	M Canal		5/10		2/10								
WPBWS	Control 4		1/10										
	Lake Mangonia												
	Clear Lake				2/8								

•AGM - Annual Geometric Mean
 • Narrative - Shall not cause an Imbalance in flora and fauna
 • TPTV- Ten Percent Threshold Value

Year 5 Table 5-4

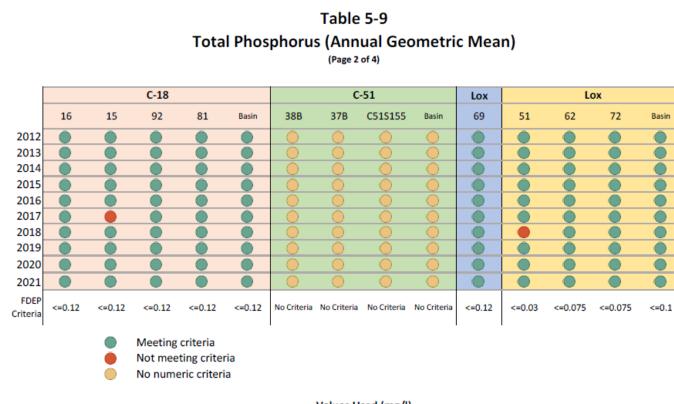
Table 5-4 Monitoring Data Reporting Period October 2020 - September 2021 (Page 1 of 44)

C-15 Watershed Monitoring Events

SITE 31E	SAMPLE Date	11/19/20	1/28/21	3/17/21	5/19/21	7/26/21	9/23/21				Geometric Mean	Numeric Surface Water Quality Standard Criteria
PARAMETER	UNITS											
Alkalinity	mg/L											
Arsenic	mg/L	0.0036	0.0036	0.0036	0.0036	0.0036	0.0017					≤ 0.05
Cadmium	mg/L	0.0002	0.0002	0.0002	0.0002	0.0011	0.0002					See Table 5-3, page 2
Chlorophyll-a (corrected)	ug/L	0.5	8.1	0.5	0.5	0.5	0.5				0.8	≤ 20 AGM
Copper	mg/L	0.0046	0.0032	0.0028	0.0013	0.0013	0.003					See Table 5-3, page 2
Dissolved Oxygen	% Saturation	52.1	77.8	81.0	107.8	71.1	27.6					> 38
E. Coli	cfu/100mL											≤ 400 cfu/100ml TPTV
Lead	mg/L	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023					See Table 5-3, page 2
Nitrogen, Ammonia	mg/L	0.320	0.018	0.018	0.018	0.018	0.150					
Nitrogen, nitrate + nitrite	mg/L	0.150	0.017	0.017	0.054	0.036	0.039					
Nitrogen, Total	mg/L	1.55	1.12	0.92	0.93	1.14	0.91				1.07	Narrative
Nitrogen, Total Kjeldahl	mg/L	1.4	1.1	0.9	0.88	1.1	0.87					
pH	None	7.74	7.55	7.75	8.11	7.61	7.33					6.0 to 8.5
Phosphorus, orthophosphate	mg/L	0.4700	0.230	0.066	0.037	0.120	0.069					
Phosphorus, Total	mg/L	0.5200	0.3000	0.1300	0.073	0.2200	0.14				0.189	Narrative
Salinity	ppth											
Specific Conductivity	umho/cm	382	651	671	554	532	439.2					≤ 1275
Temperature	deg C	23.6	23.4	25.2	28.0	31.4	28.6					
Total Hardness	mg/L	149	229	219	175	169	161					
Total Suspended Solids	mg/L	2.5	2.5	2.5	1.5	4.2	3.2					
Turbidity	NTU	5.4	2.8	2.9	1.6	3.5	0.3					≤ 29
Zinc	mg/L	0.0055	0.0055	0.0055	0.0055	0.0055	0.0055					See Table 5-3, page 2

Metal exceedences are based on hardness

Highlighted in "blue" are substituted values that were below the limits of detection. The value shown is the method detection limit provided with the data.


Highlighted in "yellow" are sample values that exceed either the State Water Quality Standards for a specific parameter or Florida'a impaired Waters Rule ortheria for chiorophyli-a.

•AGM - Annual Geometric Mean

TPTV - Ten Percent Threshold Value

Narrative - Shall not cause an imbalance in flora and fauna

AGMs -10-Year for TN, TP & Chl-a

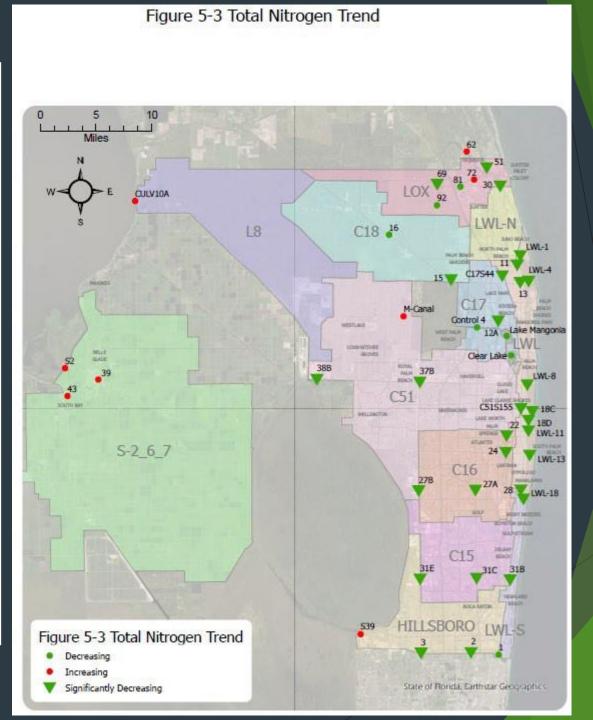
	Values Used (mg/l)													
2012	0.03	0.01	0.02	0.02	0.02	0.13	0.04	0.03	0.06	0.04	0.03	0.04	0.04	0.03
2013	0.03	0.00	0.02	0.02	0.02	0.09	0.08	0.06	0.08	0.03	0.03	0.06	0.04	0.04
2014	0.01	0.01	0.04	0.02	0.02	0.11	0.14	0.06	0.10	0.04	0.03	0.06	0.04	0.04
2015	0.02	0.01	0.02	0.02	0.02	0.11	0.08	0.08	0.09	0.03	0.02	0.05	0.04	0.03
2016	0.02	0.01	0.03	0.03	0.02	0.08	0.09	0.06	0.08	0.03	0.02	0.05	0.05	0.04
2017	0.03	0.15	0.04	0.02	0.04	0.18	0.05	0.06	0.08	0.04	0.02	0.04	0.03	0.03
2018	0.02	0.01	0.06	0.03	0.02	0.16	0.11	0.09	0.11	0.06	0.03		0.04	0.03
2019	0.03	0.01	0.03	0.02		0.04	0.01	0.07		0.03	0.02	0.05	0.04	0.03
2020	0.03	0.01	0.03	0.02	0.02	0.08	0.01	0.05	0.04	0.03	0.02	0.04	0.04	0.03
2021	0.04	0.02	0.03	0.02	0.02	0.06	0.00	0.06	0.03	0.03	0.02	0.04	0.03	0.03

Trends -Period-of-Record for TN, TP & Chl-a

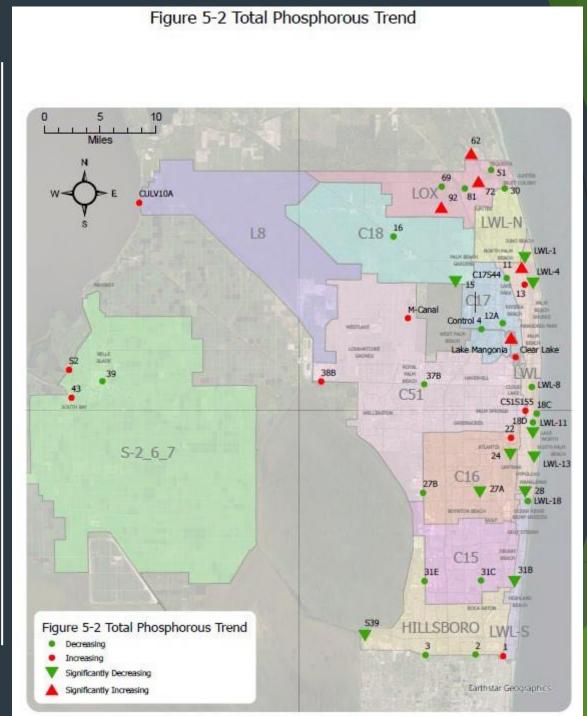
Table 5-11 Water Quality Trends C-18 Watershed (Page 4 of 14)

Total Nitrogen

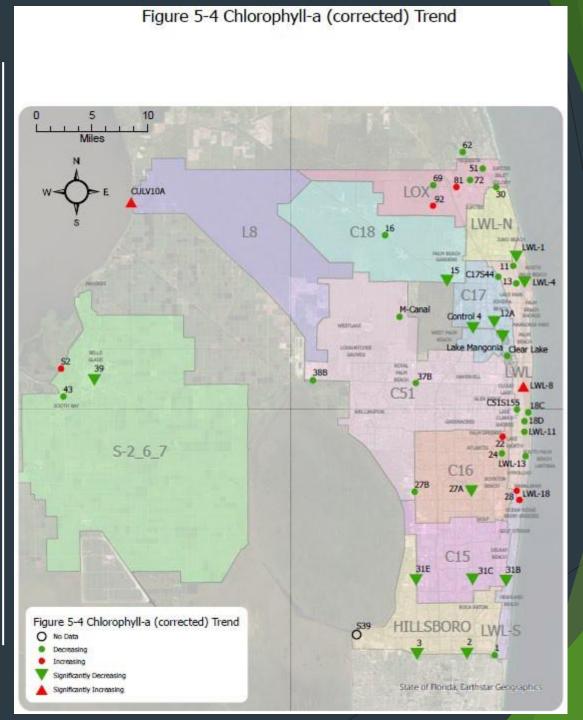
Site	Date Range	Tau	Slope ¹	Selected P-Value ²	Statistical Trend Interpretation ³
16	1999 - 2021	-0.090693	-0.000020	0.175867	Decreasing Trend
15	1999 - 2021	-0.292275	-0.000055	0.000038	Significant Decreasing Trend
92	1999 - 2021	-0.053939	-0.000007	0.301856	Decreasing Trend
81	1999 - 2021	-0.047833	-0.000006	0.361806	Decreasing Trend


Total Phosphorus

Site	Date Range	Tau	Slope ¹	Selected P-Value ²	Statistical Trend Interpretation ³
16	1999 - 2021	-0.112598	-0.000002	0.091093	Decreasing Trend
15	1999 - 2021	-0.221786	-0.000002	0.001118	Significant Decreasing Trend
92	1999 - 2021	0.172869	0.000002	0.001580	Significant Increasing Trend
81	1999 - 2021	-0.014659	0.000000	0.791554	Decreasing Trend


Total Chlorophyll-a (corrected)

Site	Date Range	Tau	Slope ¹	Selected P-Value ²	Statistical Trend Interpretation ³
16	1999 - 2021	-0.042291	-0.000077	0.545340	Decreasing Trend
15	1999 - 2021	-0.302247	-0.000256	0.000018	Significant Decreasing Trend
92	1999 - 2021	0.106205	0.000121	0.293913	Increasing Trend
81	1999 - 2021	0.160619	0.000322	0.118181	Increasing Trend


Trends -Period-of-Record for TN

Trends -Period-of-Record for TP

Trends -Period-of-Record for Chl-a

Search

THE PROBLEM OF THE REACH COUNTY PERMITTEES

This website has been authorized by the Palm Beach County MS4 NPDES (PBC NPDES) Steering Committee as a resource for all permittees within the county. It is intended that this site will provide the permittee with helpful information on understanding and complying with the requirements of the MS4 NPDES permit.

Google Site Search

Finding your data of interest

Group/Joint Activities - Water Quality Monitoring Home News The water quality monitoring requirement in the MS4 NPDES permit is met through a joint program. The monitoring program includes the following components: The MS4 Permit What is SWMP? ambient water quality sampling Components of the water quality data analysis MS4 Permit trend analyses Group/Joint annual pollutant loading calculations in Permit Year 3 Activities **Public Education** The Palm Beach County MS4 NPDES permit monitoring program includes 44 ambient water quality monitoring sites which were selected after coordination among the South Training Florida Water Management District (SFWMD), Palm Beach County Environmental esource Management (ERM), the Loxahatchee River District (LRD), Broward County WQ Monitoring (BC), City of West Palm Beach (CWPB), and the Palm Beach County permittees. Impaired Waters & The Watershed Boundary Maps depicts the 40 water quality monitoring site locations. Sites monitored by ERM are shown as circles, those monitored by the LRD are shown TMDLs as squares, those monitored by SFWMD are shown as triangles, those monitored by Annual Reporting BC are shown as stars, and those monitored by CWPB are shown as suns. White symbols signify marine or tidal sites and yellow symbols designate freshwater sites. The Meetings and LRD monitors four marine sites and three freshwater. ERM monitors ten marine sites Minutes and fifteen freshwater sites. The SFWMD monitors five freshwater sites and CWPB monitors four freshwater sites. Broward County monitors one freshwater and two Contacts marine water sites. All of Palm Beach County's ERM, LRD, BC, and CWPB data is in WIN/STORET and SFWMD data is in DbHydro. Definitions The data set for the trend analyses includes approximately 22 water quality parameters Links and all MS4 sampling events for each site's period of record as identified in these Excel spreadsheets. Accessibility Water quality nutrient trends for 40 water quality monitoring sites (TN, TP, and Chl-a for

the period of record) is prophed. The trend applying wave performed on the sublight

Finding your data of interest

🕹 l 🖸 📘 🕫 l	Extract Downloads		- 0	>
File Home Share View Com	pressed Folder Tools			^
Image: Pin to Quick access Copy Paste Cut Copy path Paste shortcut Clipboard	Move Copy to * Organize Organize New (Marked Science)		Belect none	
← → ~ ↑ 🕹 > This PC > Downloads	; ;	√ ບັ > s	earch Downloads	
📌 Quick access	Name ~ Today (3)	Date modified	lype Size	
o Creative Cloud Files	WaterQualityData_PeriodOfRecord.zip	2/11/2022 2:31 PM	Compressed (zipp 4,923 KB	
OneDrive - Mock Roos	1 62-100.doc		Microsoft Word 9 94 KB	
🛄 This PC	DR 2021_Cycle4_Year5_JointAnnualR	2/11/2022 9:26 AM	Adobe Acrobat D 9,285 KB	
3D Objects	✓ A lon me ago (1)			
Desktop	Stu Course_Demo_Files	9/7/2021 2:35 PM	ile folder	
Documents				
🖶 Downloads				
Downloads ⇒	WaterQuality	ٽ ~	Search WaterQualityD	ata_PeriodOfRec
	Name	Date modified	Туре	Size
	😨 C-15-Trend.xIsm	2/11/2022 2:40 PM	Microsoft Excel M	458 KB
	🖬 C-16-Trend.xlsm	2/11/2022 2:40 PM	Microsoft Excel M	566 KB
	🖬 C-17-Trend.xIsm	2/11/2022 2:40 PM	Microsoft Excel M	313 KB
	🔁 C-18-Trend.xIsm	2/11/2022 2:40 PM	Microsoft Excel M	521 KB
	C-51-Trend.xIsm	2/11/2022 2:40 PM	Microsoft Excel M	417 KB
	🔁 Hillsboro-Trend.xlsm	2/11/2022 2:40 PM	Microsoft Excel M	427 KB
	ICWW-N-Trend.xlsm	2/11/2022 2:40 PM	Microsoft Excel M	164 KB
	🛃 ICWW-S-Trend.xIsm	2/11/2022 2:40 PM	Microsoft Excel M	309 KB
	🛃 L-8-Trend.xlsm	2/11/2022 2:40 PM	Microsoft Excel M	214 KB
	Lox-Trend.xIsm	2/11/2022 2:40 PM		543 KB
	🙀 LWL-C-Trend.xlsm	2/11/2022 2:40 PM		548 KB
	WL-N-Trend.xlsm	2/11/2022 2:40 PM		550 KB
	s-2-6-7-Trend.xIsm	2/11/2022 2:40 PM		353 KB
	🕢 WPBWS-Trend.xlsm	2/11/2022 2:40 PM	Microsoft Excel M	422 KB

Finding your data of interest

- 21	A	В	EH	EI	EJ	EK	EL	EM	EN	EO	EP	EQ
1	LAKE WORTH LAG	OON NOR	7/1/2019	11/1/2019	1/1/2020	2/1/2020	4/1/2020	5/1/2020	6/1/2020	7/1/2020	8/1/2020	9/1/2
2	SITE LWL-1	SAMPLE DATE	7/25/2019	11/7/2019	1/23/2020	2/20/2020	4/16/2020	5/14/2020	6/18/2020	7/16/2020	8/26/2020	9/16/20
3	PARAMETER	UNITS										
4	Alkalinity	mg/L										
5	Arsenic	mg/L										
6	Cadmium	mg/L										
7	Chlorophyll-a (corrected)	ug/l	3.17	3.83	0.038	3.73	4.07	6.94		2.77	5.57	4.66
8	Copper	mg/L										
9	Dissolved Oxygen	mg/L	89.46	100.86	103.83	110.95	96.89	94.71		105.08	92.81	89.0
10	Enterococci	cfu/100mL										
11	Lead	mg/L										
12	Nitrogen, Ammonia	mg/L	0.011	0.008	0.019	0.0025	0.008	0.0025		0.005	0.005	0.002
13	Nitrogen, nitrate + nitrite	mg/L	0.0025	0.0025	0.024	0.0025	0.0025	0.0025		0.0025	0.0025	0.002
14	Nitrogen, Total	mg/L	0.36	0.33	0.313	0.205	0.321	0.299		0.356	0.404	0.29
15	Nitrogen, Total Kjeldahl	mg/L										
16	pН	None	8		8	7.9	7.9	7.8		7.9	7.9	7.8
17	Phosphorus, orthophosphate	mg/L	0.010	0.008	0.014	0.007	0.010	0.003		0.024	0.019	0.01
18	Phosphorus, Total	mg/L	0.033	0.051	0.03	0.028	0.027	0.032		0.05	0.044	0.04
19	Salinity	ppth	33.6	30.7	31.2	31.2	34.4	34.9		29	29.2	30
20	Specific Conductivity	umho/cm	51427	47329	47823	47970	52370	52978		45105	45417	4639
21	Temperature	deg C	30.9	27.7	20	26.4	28.5	25.9		32.2	30.8	30.8
22	Total Hardness	mg/L										
23	Total Suspended Solids	mg/L	5	7	4	7	1.5	8		5	5	7
24	Turbidity	NTU	0.9	0.2	0.8	1.1	1	2		0.8	1	0.6
25	Zinc	mg/L										
26												
27												
28	Show outlier values that	t are a perc										
29	Alkalinity	1000%	-	-	-	-	-	-	-	-	-	-
30	Arsenic	1000%	-	-	-	-	-	-	-	-	-	-
31	Cadmium	1000%	-	-	-	-	-	-	-	-	-	-
32	Chlorophyll-a (corrected)	1000%	_	_	_	_	_	_	-	_	_	_
33	Copper	1000%	-	-	-	-	-	-	-	-	-	-
34	Dissolved Oxygen	1000%	_	_	_	_	_	_	-	_	_	_
35	Enterococci	1000%	-	-	-	-	-	-	-	-	-	-
36	Lead	1000%	-	-	-	-	-	-	-	-	-	-
37	Nitrogen, Ammonia	1000%		_	_	_	_	_	-	_	_	_
	 ✓ Frend 	Summary	LWL-1	LWL-1-TP	LWL-1	-TN LW	L-1-Chlor	<mark>11</mark> 1	1-TP 11	-TN 13	11-Chl	or 1

Finding your data of interest

	А	В	EH	EI	EJ	EK	EL	E	EM	EN	EO						
1	LAKE WORTH LAG	OON NOR	7/1/2019	11/1/2019	1/1/2020	2/1/2020	4/1/202	20 5/1	1/2020	6/1/2020	7/1/202	0					
	SITE LWL-1	SAMPLE DATE	7/25/2019	11/7/2019	1/23/2020	2/20/2020	4/16/202	0 5/14	4/2020	6/18/2020	7/16/2020						
3	PARAMETER	UNITS															
4	Alkalinity	mg/L															
	Arsenic	mg/L															
	Cadmium	mg/L															and the second s
	Chlorophyll-a (corrected)	ug/l	3.17	3.83	0.038	3.73	4.0		A	В		С	D	E	F	G	
	Copper Dissolved Oxygen	mg/L mg/L	89.46	100.86	103.83	110.95	96.1					-	-	-		-	
	Enterococci	cfu/100mL	09.40	100.00	103.03	110.95		36									
	Lead	mg/L					3	37		Sen's	slope:						
	Nitrogen, Ammonia	mg/L	0.011	0.008	0.019	0.0025											
	Nitrogen, nitrate + nitrite	mg/L	0.0025	0.0025	0.024	0.0025	0.00	38									
14	Nitrogen, Total	mg/L	0.36	0.33	0.313	0.205	0.3						Lower	Upper			
	Nitrogen, Total Kjeldahl	mg/L															
16		None	8		8	7.9	7.5					Value	bound	bound			
	Phosphorus, orthophosphate	mg/L	0.010	0.008	0.014	0.007	0.0	0					(95%)	(95%)			
	Phosphorus, Total	mg/L	0.033	0.051	0.03	0.028	0.0	39									
	Salinity	ppth	33.6	30.7	31.2	31.2	34. 523	10		Slope		0.000	0.000	0.000			
	Specific Conductivity Temperature	umho/cm deg C	51427 30.9	47329 27.7	47823 20	47970 26.4		_									
	Total Hardness	mg/L	30.9	21.1	20	20.4	20. 4	1		Interce	ept	0.082	0.032	0.136			
	Total Suspended Solids	mg/L	5	7	4	7	1.4	2									
	Turbidity	NTU	0.9	0.2	0.8	1.1		_									
25	Zinc	mg/L					4	13									
26							4	4									
27													LWL-1	TP			
	Show outlier values that							15									
	Alkalinity	1000%	-	-	-	-	- 4	16		0.	14 _						
	Arsenic	1000% 1000%	-	-	-	-	-	_									
	Cadmium Chlorophyll-a (corrected)	1000%	-	-	-	-		17		0	12 +	0					
	Copper	1000%	-	_	-	_	- 4	8		u.		Ĭ					
	Dissolved Oxygen	1000%						19									
	Enterococci	1000%	-	-	-	-	-	_		(0.1 +						
36	Lead	1000%	-	-	-	-	- 5	50									
37	Nitrogen, Ammonia	1000%		_	_	_	- 6	51		0	08 +	L					
	→ Trend S	Summary	LWL-1	LWL-1-TP	LWL-1	-TN LW				mg/L		a		Q	~		
_							5	52		ũ		Z			Ŷ	0	
							P	53		- 0.	06 +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 -	_ & 9			
								_				4	20 kg 2	0 81 al	χĮ,	୍ନହା	
								54		0.	.04 -		10 81	161 IPI 81	1 കിൽ	8/81	
							5	55			0	6		10 Carosso	<u>R P X P</u>	8668	
							5	56		0.	02 +	6	\$8 3	5N J B 25	90 v	ଷ ି ଷ୍	
							5	57		00000							
						/	4	58		0 + + + + + + + + + + + + + + + + + + +							
							5	59			01/26/93	910/22/0107/18/0		E DATE	01/1503/27/	1812/21/20	
							6	60					JAWEL				
								51					Sen	's slope			
								52									
								2									

Questions

Palm Beach County NPDES

Northern Palm Beach County Improvement District 359 Hiatt Drive Palm Beach Gardens, FL 33418 www.pbco-npdes.org

AGENDA PALM BEACH COUNTY NPDES MS4 STEERING COMMITTEE MEETING <u>WEDNESDAY, FEBRUARY 16, 2022</u> 9:00 A.M. – 11:00 A.M. Palm Beach Gardens City Hall - Council Chambers & Virtual (Ref. No. C1050.10)

LINK TO TEAMS MEETING: Refer to NPDES Website (www.pbco-npdes.org) CALL IN NUMBER: Refer to NPDES Website (www.pbco-npdes.org) CONFERENCE ID: Refer to NPDES Website (www.pbco-npdes.org)

The agenda for the meeting is as follows:

I. MS4 Activities

a. Introductions

b. Approval of January 19, 2020, Minutes

c. Individual 5th Year Annual Reports

d. Joint Annual Report for Year 5

e. Training Registration Flyers

f. 2020-2022 Biennial Assessment

g. Cycle 5 Draft Permit

h. FDEP Request for Retention/Detention Inventory

II. Next Scheduled Event

March 17, 2022, IDDE, Spills & SEC Refresher Training by Cheryl Moore, 9:00 a.m. at City of Palm Beach Gardens Emergency Center & Virtual

You are invited to the following event: <u>NATIONAL POLLUTANT DISCHARGE</u> <u>ELIMINATION SYSTEM (NPDES) PERMIT MS4</u> <u>STAFF</u>

Thursday, March 17, 2022 from 9:00 AM to 10:00 AM (EDT) City of Palm Beach Gardens EOC 10500 N Military Trail, Palm Beach Gardens, FL 33410

<u>View Map</u>

Attend Event

Palm Beach County MS4 Permittees Staff Training ONLINE (via Zoom) or IN-PERSON (limited to 25 persons) We hope you can make it! Cheers, Cheryl L. Moore Consulting, LLC

This invitation was sent to <u>cheryl@floridastormwaterclass.com</u> by the organizer of this event, <u>Cheryl L. Moore</u> <u>Consulting, LLC</u>. To stop receiving invitations from this organizer, you can <u>unsubscribe</u>.

Eventbrite, Inc. | 535 Mission Street, 8th Floor | San Francisco, CA 94105

Palm Beach County MS4 Permittees Staff Training ONLINE (via Zoom) or IN-PERSON (for a limited number)

About this event

Thursday, March 17, 2022, from 9:00 AM to 10:00 AM (EDT)

Hour Program to obtain state refresher training for the Florida
 Department of Environmental Protection's MS4 Training Requirements.

FREE: Palm Beach County Employees and Co-Permittees.

(All Government attendees must register with a government email address).

Available ONLINE (via Zoom) and In-Person (for a limited number):

City of Palm Beach Gardens EOC 10500 N Military Trail, Palm Beach Gardens, FL 33410

In-Person will be limited to 25 Attendees (Please Register Early)

Online via Zoom an Unlimited Number of Attendees.

This course will provide 1 Professional Development Hour for FL Engineers and 1 Continuing Education Credit for F.A.C.E. Code Enforcement Officers

For more information Email: cheryl@floridastormwaterclass.com

Sponsored by the Florida Department of Environmental Protection, Palm Beach County MS4 Permittee Group and Cheryl L. Moore Consulting, LLC.

Date and time

Thu, March 17, 2022 9:00 AM - 10:00 AM EDT Add to calendar

Location

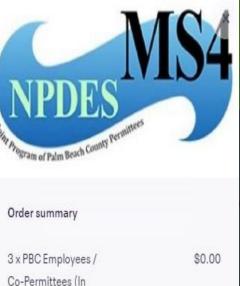
City of Palm Beach Gardens EOC 10500 N. Military Trail Palm Beach Gardens, FL 33410 View Map National Pollutant Discharge Elimination System (NPDES) Permit MS4 Staff

Thu, Mar 17, 2022 9:00 AM - 10:00 AM EDT

Enter promo code

PBC Employees / Co-Permittees (In Person) Free Sales end on Mar 16, 2022

PBC Employees / Co-Permittees (Online Via Zoom) Free


Sales end on Mar 16, 2022

Powered by eventbrite

English (US) 🗸

3 🗸

3 🗸

S x PBC Employees / \$0.00 Co-Permittees (In Person) 3 x PBC Employees / \$0.00

Co-Permittees (Online Via Zoom)

Total \$0.00

4

Checkout

Time left 59:39

By clicking "Register", I accept the Terms of Service and have read the Privacy Policy. I agree that Eventbrite may share my information with the event organizer.

Contact information

Continue as guest or login for a faster experience.

First name *	Last name*	
Email address * cheryl@floridastormwaterclass.com	Confirm email*	

Ticket 1 · PBC Employees / Co-Permittees (In Person)

First name *	Last name*	
Email address*		

Order summary	
3 x PBC Employees /	\$0.00
Co-Permittees (In	
Person)	
3 x PBC Employees /	\$0.00
Co-Permittees (Online	
Via Zoom)	
Delivery	\$0.00

Delivery	\$0.00	
6 x eTicket		
Total	\$0.00	

Register

Palm Beach County NPDES

Northern Palm Beach County Improvement District 359 Hiatt Drive Palm Beach Gardens, FL 33418 www.pbco-npdes.org

AGENDA PALM BEACH COUNTY NPDES MS4 STEERING COMMITTEE MEETING <u>WEDNESDAY, FEBRUARY 16, 2022</u> 9:00 A.M. – 11:00 A.M. Palm Beach Gardens City Hall - Council Chambers & Virtual (Ref. No. C1050.10)

LINK TO TEAMS MEETING: Refer to NPDES Website (www.pbco-npdes.org) CALL IN NUMBER: Refer to NPDES Website (www.pbco-npdes.org) CONFERENCE ID: Refer to NPDES Website (www.pbco-npdes.org)

The agenda for the meeting is as follows:

- I. MS4 Activities
 - a. Introductions
 - b. Approval of January 19, 2020, Minutes
 - c. Individual 5th Year Annual Reports
 - d. Joint Annual Report for Year 5
 - e. Training Registration Flyers
 - f. 2020-2022 Biennial Assessment
 - g. Cycle 5 Draft Permit
 - h. FDEP Request for Retention/Detention Inventory
- II. Next Scheduled Event

March 17, 2022, IDDE, Spills & SEC Refresher Training by Cheryl Moore, 9:00 a.m. at City of Palm Beach Gardens Emergency Center & Virtual

Palm Beach County MS4s

Palm Beach County MS4 NPDES Steering Committee Meeting Wednesday February 16, 2022